

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E / B.Tech (Full Time) END SEMESTER EXAMINATIONS – APRIL / MAY 2024

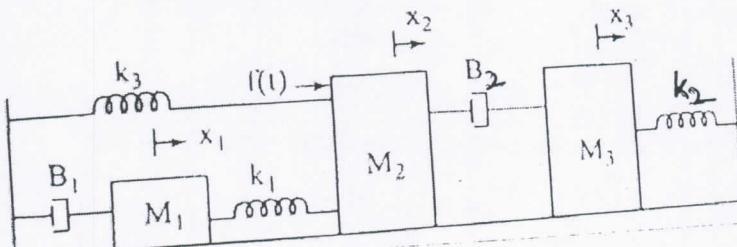
Electrical & Electronics Engineering
Fourth Semester
EE5402 & CONTROL SYSTEMS
(Regulation2019)

Time:3hrs

Max.Marks: 100

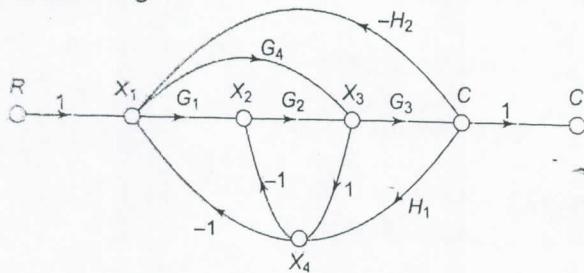
CO1	Represent simple systems in transfer function and state variable forms.
CO2	Analyze simple systems in time domain.
CO3	Analyze simple systems in frequency domain.
CO4	Infer the stability of systems in time and frequency domain
CO5	Interpret characteristics of the system and find out solution for simple control problems.

BL – Bloom's Taxonomy Levels
(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

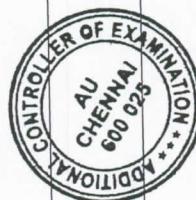

PART- A(10x2=20Marks)

(Answer all Questions)

Q.No	Questions	Marks	CO		BL
			1	2	
1	Compare linear and nonlinear system with example.	2	1	1	
2	Define a transfer function with example.	2	1	1	
3	Define type and order of a system with example.	2	2	2	
4	Compare the step response of the first and second order systems. Also draw the response.	2	2	2	
5	Define gain margin and phase margin for a polar plot.	2	3	1	
6	List the frequency domain specifications.	2	3	1	
7	The differential equation that represent the system is $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = r(t)$ where $y(t)$ is the output and $r(t)$ is the input. Obtain a state space model.	2	4	2	
8	List out the properties of state transition matrix.	2	4	2	
9	Compare series compensator and feedback compensator.	2	5	2	
10	List the advantages and disadvantages of P and D controller.	2	5	2	


PART- B(5x 13= 65Marks)

Q.No	Questions	Marks	CO		BL
			1	3	
11 (a) (i)	Derive the transfer function for armature controlled DC motor.	5	1	3	
(ii)	Obtain the differential equations of the mechanical system shown in Figure.	8	1	3	



OR

11.(b) (i) Find the overall gain of the SFG.

8 1 3

(ii) State the basic elements for modeling in translational and rotational mechanical system with respect to voltage and current source.

5 1 2

12 (a) (i) For the second-order system described by the following transfer function, determine the frequency of un-damped and damped oscillations, maximum over shoot, peak time, rise time, settling time and the final value due to a unit step input.

8 2 3

$$G(s) = \frac{144}{s^2 + 9.6s + 144}$$

(ii) The unit step response of second-order underdamped system is known to be, $c(t) = 1 - Ae^{-5t} \sin(\beta t + 0.8957)$
Determine the value of A and β .

5 2 3

OR

12 (b) Sketch the root locus of closed loop poles of the feedback control system with open loop transfer function, $G(s)H(s) = \frac{K(s+5)}{s(s^2+4s+5)}$.

13 2 3

13 (a) For a unity negative feedback system, the open loop transfer function is $G(s) = \frac{90}{s(s^2+2s+9)}$. Find the gain crossover frequency and the phase margin. Also find the gain and phase margin.

13 3 4

OR

13 (b) If the system function $G(s) = \frac{40}{(s+4)(s^2+4s+8)}$ is the open loop transfer function of a unity feedback system, find the gain margin and phase margin of the system. Use polar plot.

13 3 4

14 (a) A state model for a linear time invariant system is given by,

$$\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -24 & -26 & -9 \end{bmatrix} [X] + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = [1 \ 2 \ 1] [X]$$

5+8 4 4

Determine the Eigen values and the transfer function $Y(s)/R(s)$.

OR

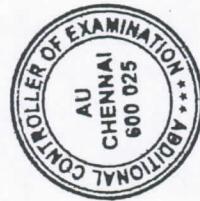
14 (b) (i) Check the controllability and observability of the system

$$\dot{X} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

7 4 4

$$y = [1 \ 2] X$$

(ii) Determine the state transition matrix for the given state matrix


6 4 4

$$A = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix}$$

15. (a)	Design a lag compensator for a unity feedback system with transfer function, $G(s) = \frac{K(s+4)}{(s+2)(s+8)(s+12)}$ given the following specifications: Static error constant = 100, phase margin = 40°.	13	5	4
OR				
15 (b) (i)	Write down the design procedure for lead compensator.	8	5	4
(ii)	With the suitable block diagrams and equations explain the P, PI and PID controllers.	5	5	4

PART- C(1x 15=15Marks)

Q.No	Questions	Marks	CO	BL
16. (i)	<p>Find the range of K to keep the system shown in Figure to be stable</p>	8	2	5
(ii)	<p>For the electrical network shown in figure, write down the necessary equations to get an expression for $V_0(t)$ in terms of the sources $V_1(t)$ and $i(t)$.</p>	7	4	5

